skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Doleck, Tenzing"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Next-generation sequencing (NGS) technologies have revolutionized phylogenomics by decreasing the cost and time required to generate sequence data from multiple markers or whole genomes. Further, the fragmented DNA of biological specimens collected decades ago can be sequenced with NGS, reducing the need for collecting fresh specimens. Sequence capture, also known as anchored hybrid enrichment, is a method to produce reduced representation libraries for NGS sequencing. The technique uses single-stranded oligonucleotide probes that hybridize with pre-selected regions of the genome that are sequenced via NGS, culminating in a dataset of numerous orthologous loci from multiple taxa. Phylogenetic analyses using these sequences have the potential to resolve deep and shallow phylogenetic relationships. Identifying the factors that affect sequence capture success could save time, money, and valuable specimens that might be destructively sampled despite low likelihood of sequencing success. We investigated the impacts of specimen age, preservation method, and DNA concentration on sequence capture (number of captured sequences and sequence quality) while accounting for taxonomy and extracted tissue type in a large-scale butterfly phylogenomics project. This project used two probe sets to extract 391 loci or a subset of 13 loci from over 6,000 butterfly specimens. We found that sequence capture is a resilient method capable of amplifying loci in samples of varying age (0–111 years), preservation method (alcohol, papered, pinned), and DNA concentration (0.020 ng/μl - 316 ng/ul). Regression analyses demonstrate that sequence capture is positively correlated with DNA concentration. However, sequence capture and DNA concentration are negatively correlated with sample age and preservation method. Our findings suggest that sequence capture projects should prioritize the use of alcohol-preserved samples younger than 20 years old when available. In the absence of such specimens, dried samples of any age can yield sequence data, albeit with returns that diminish with increasing age. 
    more » « less
  2. Abstract Butterflies are a diverse and charismatic insect group that are thought to have evolved with plants and dispersed throughout the world in response to key geological events. However, these hypotheses have not been extensively tested because a comprehensive phylogenetic framework and datasets for butterfly larval hosts and global distributions are lacking. We sequenced 391 genes from nearly 2,300 butterfly species, sampled from 90 countries and 28 specimen collections, to reconstruct a new phylogenomic tree of butterflies representing 92% of all genera. Our phylogeny has strong support for nearly all nodes and demonstrates that at least 36 butterfly tribes require reclassification. Divergence time analyses imply an origin ~100 million years ago for butterflies and indicate that all but one family were present before the K/Pg extinction event. We aggregated larval host datasets and global distribution records and found that butterflies are likely to have first fed on Fabaceae and originated in what is now the Americas. Soon after the Cretaceous Thermal Maximum, butterflies crossed Beringia and diversified in the Palaeotropics. Our results also reveal that most butterfly species are specialists that feed on only one larval host plant family. However, generalist butterflies that consume two or more plant families usually feed on closely related plants. 
    more » « less